Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 365: 876-888, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030082

RESUMO

As one of the most challenging cancers, glioma still lacks efficient therapeutic treatment in clinics. The dilemmas of nanodrug-based therapies for glioma are due not only the limited permeability of the blood-brain barrier (BBB) but also the deficiency of targeting tumor lesions. Thus, spatiotemporally sequential delivery of therapeutics from BBB-crossing to glioma accumulation is considered a strategy to obtain better outcomes. Here, we developed a biomimetic chemotherapy nanodrug composed of the hybrid membrane envelope of U87 cell membranes and RAW264.7 cell membranes, and the core of paclitaxel (PTX)-loaded liposome (PTX@C-MMCL). In the research, PTX@C-MMCL showed superior ability to cross the BBB via RAW264.7 cell membranes and accurate targeting to the brain tumor lesions relying on the homotypic targeting capacity of U87 cell membranes. Furthermore, PTX@C-MMCL can maintain a prolonged circulation in vivo. Importantly, PTX@C-MMCL effectively inhibited the development of glioma. Conclusively, our biomimetic nanodrug holds great potential for brain tumor targeting therapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Lipossomos/metabolismo , Biomimética , Linhagem Celular Tumoral , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Paclitaxel , Sistemas de Liberação de Medicamentos , Barreira Hematoencefálica/metabolismo
2.
Nanomedicine ; 53: 102693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37343780

RESUMO

Low response rate of immune checkpoint blockade (ICB) has limited its clinical application. A promising strategy to overcome this limitation is the use of therapeutic cancer vaccines, which aim to induce robust immune responses that synergize with ICB through immune enhancement and immune normalization strategies. Herein, we developed a combination immunotherapy by combining nano-vaccines consisting of whole tumor cell lysates/CpG liposomes (LCLs) with an anti-PD-L1 loaded lipid gel (aPD-L1@LG). The LCLs were fabricated using cationic liposomes, while the lipid gels (LGs) were prepared by using soybean phosphatidylcholine (SPC) and glycerol dioleate (GDO). Subcutaneous administration of LCLs successfully activated dendritic cells (DCs), and intratumoral administration of anti-PD-L1@LG ensured sustained ICB activity. These results demonstrated that this combination immunotherapy enhanced anti-tumor efficacy and prolonged the survival time in melanoma by activating systemic anti-tumor immune responses. These findings highlight the potential of this rational design as a promising strategy for tumor treatment.


Assuntos
Lipossomos , Melanoma , Humanos , Lipossomos/farmacologia , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/farmacologia , Lipídeos/farmacologia , Microambiente Tumoral
3.
J Control Release ; 351: 245-254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108811

RESUMO

Transdermal administration of chemotherapeutics into tumor tissues may be an effective treatment to reduce toxic side effects and improve patient compliance for melanoma. Herein, we report a multistage transdermal drug delivery system for chemotherapy of melanoma. In this system, dendritic lipopeptide (DLP) modified multistage targeted liposomes (Mtlip) were incorporated into the hydrogel matrix to achieve localized and sustained drug release; Ultra-deformability of Mtlip can pass through dense stratum corneum to the epidermis where melanoma is located; Virus-mimicking Mtlip enhances the payload in tumor tissues by high permeability; The positive charged Mtlip can improve cell uptake efficiency and selectively accumulate into mitochondria to increases toxic. The efficacy of this type of multistage targeted liposomes loaded hydrogel in treating melanoma was systematically evaluated both in vitro and in vivo.


Assuntos
Lipossomos , Melanoma , Humanos , Hidrogéis/uso terapêutico , Sistemas de Liberação de Medicamentos , Lipopeptídeos/uso terapêutico , Melanoma/metabolismo , Administração Cutânea
4.
J Control Release ; 350: 803-814, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36087802

RESUMO

Postsurgical treatment is of great importance to combat tumor recurrence and metastasis. Anti-CD47 antibodies (aCD47) can block the CD47-signal regulatory protein-alpha (CD47-SIRPα) pathway to restore immunity. Here, an in-situ gel implantation was engineered by crosslinking chitosan (CS) and pullulan (Pul) for postsurgical treatment. A highly selected chemotherapeutic, cyclopamine (Cyc), encapsulated in liposomes (Cyc-Lip) was co-loaded with aCD47 in gels for chemoimmunotherapy. Importantly, a sequential drug release kinetics can be achieved. Nanotherapeutics were confirmed to be released prior to aCD47 in a burst-release manner, which was benefit for immediately killing residual tumor cells followed by releasing tumor antigens. Meanwhile, aCD47 was released in a sustained-release manner to restore macrophage functions and exert anti-tumor immune responses. Afterwards, the efficacy of in-situ chemoimmunotherapy was confirmed on 4T1 mouse breast cancer models, which could not only efficiently augment anti-tumor effect to inhibit tumor recurrence but also establish a long-term immune memory to combat tumor metastasis.


Assuntos
Anticarcinógenos , Imunoterapia , Neoplasias , Cuidados Pós-Operatórios , Animais , Anticarcinógenos/administração & dosagem , Antígenos de Neoplasias , Quitosana/administração & dosagem , Preparações de Ação Retardada , Imunoterapia/métodos , Camundongos , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias/patologia , Neoplasias/cirurgia
5.
Nat Commun ; 13(1): 4553, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931666

RESUMO

Combining immune checkpoint blockade (ICB) therapy with photodynamic therapy (PDT) holds great potential in treating immunologically "cold" tumors, but photo-generated reactive oxygen species (ROS) can inevitably damage co-administered ICB antibodies, hence hampering the therapeutic outcome. Here we create a ROS-responsive hydrogel to realize the sustained co-delivery of photosensitizers and ICB antibodies. During PDT, the hydrogel skeleton poly(deca-4,6-diynedioic acid) (PDDA) protects ICB antibodies by scavenging the harmful ROS, and at the same time, triggers the gradual degradation of the hydrogel to release the drugs in a controlled manner. More interestingly, we can visualize the ROS-responsive hydrogel degradation by Raman imaging, given the ultrastrong and degradation-correlative Raman signal of PDDA in the cellular silent window. A single administration of the hydrogel not only completely inhibits the long-term postoperative recurrence and metastasis of 4T1-tumor-bearing mice, but also effectively restrains the growth of re-challenged tumors. The PDDA-based ROS-responsive hydrogel herein paves a promising way for the durable synergy of PDT and ICB therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Hidrogéis , Camundongos , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
6.
J Control Release ; 346: 212-225, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461965

RESUMO

Tumor recurrence and metastasis after surgery remain challenges for tumor treatment. Strategy that can promote the immunogenicity, activate adaptative immune response and eliminate post-operative immunosuppression would be a promising way to achieve a desired clinical benefit. In this study, immunogenic cell death (ICD) priming anti-tumor adaptive immune response was executed to potentiate immune checkpoint blockade (ICB) therapy through the PD1/PDL1 pathway for postsurgical treatment. Here, we present a bio-responsive and cargo-catchable gel depot composed of pullulan and chitosan cross-linking through matrix metalloproteinase (MMP) sensitive peptide for co-delivery of anti-programmed death-ligand 1 antibody (aPDL1) and doxorubicin -encapsulated liposomes (DOX-Lip). This drug carrier showed expected ability to respond to the highly expressed MMP in postsurgical tumor microenvironment (TME). In vivo studies on 4T1 breast tumor mouse model demonstrated that the gel depot could efficiently prolong the mouse survival after tumor resection by preventing tumor recurrence and metastasis. The results suggested that ICD combining with PD1/PDL1 blockade based on the bio-responsive and cargo-catchable gel depot could facilitate the maturation of DCs and reverse the immunosuppressive environment in tumor resection area, thus amplifying the systemic anti-tumor immune response.


Assuntos
Morte Celular Imunogênica , Recidiva Local de Neoplasia , Animais , Linhagem Celular Tumoral , Fatores Imunológicos , Imunoterapia/métodos , Camundongos , Microambiente Tumoral
7.
J Control Release ; 345: 120-137, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276301

RESUMO

Due to the unique microenvironment, nanoparticles cannot easily penetrate deeply into tumours, which decreases their therapeutic efficacy. Thus, new strategies should be developed to solve this problem and increase the efficacy of nanomedicine. In this study, gold nanoraspberries (GNRs) were constructed using ultrasmall gold nanospheres (UGNPs) with a matrix metalloproteinase (MMP)-2/9-sensitive peptide as a cross-linking agent. These UGNPs were then modified with trastuzumab (TRA) and mertansine derivatives (DM1) via the AuS bond. TRA targets the human epidermal growth factor receptor-2 (Her-2) which is overexpressed on Her-2+ breast cancer cells. The AuS bond in GNRs-DM1 can be replaced by the free sulfhydryl group of GSH, which could achieve GSH dependent redox responsive release of the drug. In the mouse model of Her-2+ breast cancer, a "positive feedback" triple enhanced penetration platform was construct to treat tumours. Firstly, near-infrared light-triggered photothermal conversion increased vascular permeability, resulting in nanoparticle penetration. Secondly, GNRs disintegrated into UGNPs in response to stimulation with MMPs. GNRs with larger particle sizes reached the tumour site through EPR effect and active targeting. Meanwhile, UGNPs with smaller particle sizes penetrated deeply into the tumour through diffusion. Thirdly, the UGNPs transformed activated cancer-associated fibroblasts to a quiescent state, which reduced intercellular pressure and promoted the penetration of the UGNPs into the interior of the tumour. In turn, an increase in the number of nanoparticles penetrating into the tumour led to a "positive feedback" loop of triple enhanced photothermal effects and further self-amplify the permeability in vivo. Interventional photothermal therapy (IPTT) was used to improve the therapeutic efficacy by reducing the laser power attenuation caused by percutaneous irradiation. The GNRs also showed excellent multimode imaging (computed tomography, photoacoustic imaging and photothermal imaging) capabilities and high anti-tumour efficacy due to efficient tumour targeting and triple enhanced deep penetration into the tumour site. Thus, these MMP-2/redox dual-responsive GNRs are promising carriers of drugs targeting human epidermal growth factor receptor 2+ breast cancer.


Assuntos
Nanosferas , Nanotubos , Animais , Linhagem Celular Tumoral , Retroalimentação , Ouro/química , Camundongos , Nanotubos/química , Fototerapia , Terapia Fototérmica
8.
Nanomicro Lett ; 13(1): 141, 2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34138357

RESUMO

The highly immunosuppressive microenvironment after surgery has a crucial impact on the recurrence and metastasis in breast cancer patients. Programmable delivery of immunotherapy-involving combinations through a single drug delivery system is highly promising, yet greatly challenging, to reverse postoperative immunosuppression. Here, an injectable hierarchical gel matrix, composed of dual lipid gel (DLG) layers with different soybean phosphatidylcholine/glycerol dioleate mass ratios, was developed to achieve the time-programmed sequential delivery of combined cancer immunotherapy. The outer layer of the DLG matrix was thermally responsive and loaded with sorafenib-adsorbed graphene oxide (GO) nanoparticles. GO under manually controlled near-infrared irradiation generated mild heat and provoked the release of sorafenib first to reeducate tumor-associated macrophages (TAMs) and promote an immunogenic tumor microenvironment. The inner layer, loaded with anti-CD47 antibody (aCD47), could maintain the gel state for a much longer time, enabling the sustained release of aCD47 afterward to block the CD47-signal regulatory protein α (SIRPα) pathway for a long-term antitumor effect. In vivo studies on 4T1 tumor-bearing mouse model demonstrated that the DLG-based strategy efficiently prevented tumor recurrence and metastasis by locally reversing the immunosuppression and synergistically blocking the CD47-dependent immune escape, thereby boosting the systemic immune responses.

9.
Int J Nanomedicine ; 16: 2443-2459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814909

RESUMO

BACKGROUND: Specific modifications to carriers to achieve targeted delivery of chemotherapeutics into malignant tissues are a critical point for efficient diagnosis and therapy. In this case, bovine serum albumin (BSA) was conjugated with cetuximab-valine-citrulline (vc)-doxorubicin (DOX) to target epidermal growth factor receptor (EGFR) and enable the release of drug in EGFR-overexpressed tumor cells. METHODS: Maleimidocaproyl-valine-citrulline-p-aminobenzylcarbonyl-p-nitrophenol (MC-Val-Cit-PAB-PNP) and DOX were used to synthesize MC-Val-Cit-PAB-DOX, which was further linked with cetuximab to prepare antibody-drug conjugates (ADCs). Then, the ADCs were adsorbed to the surface of the BSA nanoparticles (NPs), which were prepared by a desolvation method to obtain cetuximab-vc-DOX-BSA-NPs. The cetuximab-vc-DOX conjugates adsorbed on the surface of the BSA nanoparticles were determined and optimized by size exclusion chromatography. An in vitro cytotoxicity study was conducted using a colon carcinoma cell line with different EGFR-expression levels to test the selectivity of cetuximab-vc-DOX-NPs. RESULTS: The vc-DOX and cetuximab-vc-DOX conjugates were both synthesized successfully and their structural characteristics confirmed by 1H-NMR and SDS-PAGE. The MTT assay showed stronger cytotoxicity of cetuximab-vc-DOX-NPs versus control IgG-vc-DOX-NPs in EGFR-overexpressing RKO cells. Cellular binding and intracellular accumulation determined by flow cytometry and confocal laser scanning microscopy revealed the strong binding ability of cetuximab-vc-DOX-NPs to RKO cells. The in vivo imaging study demonstrated that cetuximab-vc-DOX-NPs exhibited higher fluorescent intensity in tumor tissues than non-decorated nanoparticles (IgG-vc-DOX-NPs). In vivo tumor inhibition and survival tests showed that cetuximab-vc-DOX-NPs revealed higher tumor inhibition efficacy and lower systemic toxicity than control IgG-vc-DOX- NPs. CONCLUSION: The obtained results emphasize that cetuximab-vc-DOX-NPs, with good tumor-targeting ability and low systemic toxicity, are a promising targeting system for drug delivery.


Assuntos
Cetuximab/uso terapêutico , Citrulina/química , Neoplasias Colorretais/tratamento farmacológico , Doxorrubicina/uso terapêutico , Receptores ErbB/metabolismo , Nanopartículas/química , Soroalbumina Bovina/química , Valina/química , Adsorção , Animais , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Endocitose/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Camundongos , Tamanho da Partícula , Espectroscopia de Prótons por Ressonância Magnética , Distribuição Tecidual/efeitos dos fármacos
10.
J Nanobiotechnology ; 19(1): 77, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741008

RESUMO

BACKGROUND: Although many treatments for breast cancer are available, poor tumour targeting limits the effectiveness of most approaches. Consequently, it is difficult to achieve satisfactory results with monotherapies. The lack of accurate diagnostic and monitoring methods also limit the benefits of cancer treatment. The aim of this study was to design a nanocarrier comprising porous gold nanoshells (PGNSs) co-decorated with methoxy polyethylene glycol (mPEG) and trastuzumab (Herceptin®, HER), a therapeutic monoclonal antibody that binds specifically to human epidermal receptor-2 (HER2)-overexpressing breast cancer cells. Furthermore, a derivative of the microtubule-targeting drug maytansine (DM1) was incorporated in the PGNSs. METHODS: Prepared PGNSs were coated with mPEG, DM1 and HER via electrostatic interactions and Au-S bonds to yield DM1-mPEG/HER-PGNSs. SK-BR-3 (high HER2 expression) and MCF-7 (low HER2) breast cancer cells were treated with DM1-mPEG/HER-PGNSs, and cytotoxicity was evaluated in terms of cell viability and apoptosis. The selective uptake of the coated PGNSs by cancer cells and subsequent intracellular accumulation were studied in vitro and in vivo using inductively coupled plasma mass spectrometry and fluorescence imaging. The multimodal imaging feasibility and synergistic chemo-photothermal therapeutic efficacy of the DM1-mPEG/HER-PGNSs were investigated in breast cancer tumour-bearing mice. The molecular mechanisms associated with the anti-tumour therapeutic use of the nanoparticles were also elucidated. RESULT: The prepared DM1-mPEG/HER-PGNSs had a size of 78.6 nm and displayed excellent colloidal stability, photothermal conversion ability and redox-sensitive drug release. These DM1-mPEG/HER-PGNSs were taken up selectively by cancer cells in vitro and accumulated at tumour sites in vivo. Moreover, the DM1-mPEG/HER-PGNSs enhanced the performance of multimodal computed tomography (CT), photoacoustic (PA) and photothermal (PT) imaging and enabled chemo-thermal combination therapy. The therapeutic mechanism involved the induction of tumour cell apoptosis via the activation of tubulin, caspase-3 and the heat shock protein 70 pathway. M2 macrophage suppression and anti-metastatic functions were also observed. CONCLUSION: The prepared DM1-mPEG/HER-PGNSs enabled nanodart-like tumour targeting, visibility by CT, PA and PT imaging in vivo and powerful tumour inhibition mediated by chemo-thermal combination therapy in vivo. In summary, these unique gold nanocarriers appear to have good potential as theranostic nanoagents that can serve both as a probe for enhanced multimodal imaging and as a novel targeted anti-tumour drug delivery system to achieve precision nanomedicine for cancers.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Ouro/química , Imagem Multimodal/métodos , Nanoconchas/química , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Redução da Medicação , Tratamento Farmacológico , Feminino , Humanos , Células MCF-7 , Macrófagos , Maitansina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Terapia Fototérmica , Polietilenoglicóis/química , Porosidade , Receptor ErbB-2/metabolismo
12.
J Colloid Interface Sci ; 586: 391-403, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189320

RESUMO

Artemisinin (ART) is well known as an antimalarial drug, and it can also be used to treat inflammation as well as cancer. Although many researchers have reported the antitumor activity of ART, most of these studies were investigated in vitro. In addition, ART is sparingly soluble in water, limiting its clinical relevance in drug development. Based on the data from our preliminary study, ART is not cytotoxic at low micromolar concentrations. Thus, we hypothesized that smart nanocarriers are beneficial for not only increasing the solubility of ART but also elevating the concentration of the drug at the target, thereby inducing the ideal antitumor effect. In this article, a reversibly activatable cell-penetrating peptide ((HE)10-G5-R6 or HE-R6) was introduced to modify artemisinin (ART)-loaded liposomes (ART-Lip-HE-R6) against tumors, and in vitro and in vivo performance were investigated. ART-Lip-HE-R6 exhibited sustained release under different pH conditions. The internalization and cytotoxicity of liposomes were enhanced at low pH, i.e., 6.5, after modification with HE-R6 versus nonmodified liposomes. Moreover, a longer retention time in tumors could be observed in the ART-Lip-HE-R6 group, followed by higher efficiency of tumor suppression. In conclusion, Lip-HE-R6 might be a promising delivery system for ART in cancer therapy.


Assuntos
Antineoplásicos , Artemisininas , Peptídeos Penetradores de Células , Antineoplásicos/farmacologia , Artemisininas/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Lipossomos
13.
Int J Nanomedicine ; 15: 6721-6734, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982229

RESUMO

INTRODUCTION: Oxaliplatin (L-OHP) is a well-known third-generation platinum anticancer drug with severe systemic- and neuro-toxicity. The main objective of the current research was to develop a targeted long-circulating thermosensitive smart-release liposome (LCTL) system for better therapeutic efficacy and less toxicity. METHODS: The reverse-phase evaporation method (REV) was used to prepare L-OHP loaded LCTL (L-OHP/LCTL). The physical characteristics were evaluated including encapsulation efficiency (EE), size, zeta potential and stability. The release behavior, cytotoxicity and in vivo evaluation were also carried out. RESULTS: EE of LCTL was around 25% with a uniform size distribution, and LCTL achieved almost complete release at 42°C while it was only 10% at 37°C. Moreover, the LCTL showed significantly higher cytotoxicity at 42°C than that at 37°C. The in vivo results indicated LCTL could target tumors and enhance retention for more than 24 h, thereby enhancing anti-tumor efficacy on 4T1-bearing mice. DISCUSSION: These results indicated that LCTL not only possessed a prolonged circulation time but it also enhanced accumulation and achieved selective release at the tumor sites. Conclusively, LCTL could serve as a promising carrier for oxaliplatin delivery to treat solid tumors.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/administração & dosagem , Lipossomos/química , Oxaliplatina/administração & dosagem , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Lipossomos/uso terapêutico , Masculino , Camundongos Endogâmicos BALB C , Imagem Molecular , Neoplasias/tratamento farmacológico , Oxaliplatina/farmacocinética , Tamanho da Partícula , Coelhos , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Drug Deliv ; 27(1): 1342-1359, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32964732

RESUMO

Presently, a combination of chemotherapy, radiotherapy, thermotherapy, and other treatments has become a hot topic of research for the treatment of cancer, especially lung cancer. In this study, novel hollow gold nanoparticles (HGNPs) were used as drug carriers, and in order to improve the targeting ability of HGNPs to a lung tumor site, polyoxyethylene sorbitol oleate (PSO) was chosen here as a target ligand since it can be specifically recognized by the low-density lipoprotein (LDL) receptor which is usually over expressed on A549 lung cancer cells. In this way, a PSO-modified doxorubicin-loaded HGNP drug delivery system (PSO-HGNPs-DOX) was constructed and its physicochemical properties, photothermal conversion ability, and drug release of PSO-HGNPs-DOX was investigated. Further, the effects of triple combination therapy, the intracellular uptake, and the ability to escape macrophage phagocytosis of PSO-HGNPs-DOX were also studied using A549 cells in vitro. In addition, an in vivo mouse model was also used to study the targeting of PSO-HGNPs-DOX to lung cancer. PSO-HGNPs-DOX demonstrated a good triple therapeutic effect for lung cancer (A549 cell viability was only 10% at 500 µM) by LDL receptor mediated endocytosis and was able to escape macrophage phagocytosis to enhance its accumulation at the target site. Therefore, PSO-HGNPs-DOX is a novel, safe, promising, and targeted drug carrier designed for triple combination lung cancer therapy which should be further studied for such applications.


Assuntos
Endocitose/fisiologia , Hexoses/administração & dosagem , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Receptores de LDL/metabolismo , Células A549 , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Ouro/administração & dosagem , Humanos , Neoplasias Pulmonares/terapia , Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fagocitose/efeitos dos fármacos , Terapia Fototérmica/métodos , Polietilenoglicóis/administração & dosagem , Ratos , Receptores de LDL/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Nanomedicine ; 29: 102252, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615336

RESUMO

Targeting cisplatin to the sites of action and decreasing its side effects are still major challenges. Here, we introduced a polyglutamic acid-platinum(IV) prodrug nanoconjugates (γ-PGA-CA-Pt(IV)) constructed by polyglutamic acid and modified platinum(IV) prodrug to reserve the anti-tumor efficacy of cisplatin with decreased side effects. We describe the synthesis, physico-chemical characterization, and redox- and pH-sensitive releasing behavior of the nanoconjugate. In vitro studies revealed that, when incubated with glutathione in advance, the γ-PGA-CA-Pt(IV) nanoconjugate induced significant apoptosis in human breast carcinoma MCF-7 cells. From in vivo antitumor efficacy evaluation, the γ-PGA-CA-Pt(IV) nanoconjugate obviously improved the survival rate of tumor-bearing mice with inhibition of the tumor growth compared with cisplatin. Meanwhile, the nanoconjugates showed remarkable improved safety profile than the free cisplatin.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanoconjugados/química , Pró-Fármacos/farmacologia , Animais , Neoplasias da Mama/patologia , Cisplatino/química , Cisplatino/farmacologia , Feminino , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Oxirredução , Platina/química , Platina/farmacologia , Ácido Poliglutâmico/análogos & derivados , Ácido Poliglutâmico/química , Ácido Poliglutâmico/farmacologia , Pró-Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Drug Deliv ; 27(1): 248-257, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32003255

RESUMO

Cancer is a kind of malignant diseases that threatens human health and the research application of anti-tumor drug therapeutics is growingly always been focused on. Many new compounds with great anticancer activity were synthesized but cannot be hard to be developed into clinical use due to its poor water solubility. Deoxypodophyllotoxin (DPT) is just an example. We develop lyophilized Deoxypodophyllotoxin (DPT) loaded polymeric micelles using methoxy polyethylene glycol-block-Poly (D, L-lactide) (mPEG-PLA). DPT-PM freeze-dried powder was successfully prepared using optimized formulation. mPEG-PLA was added to hydration media before hydrating as cryoprotectants. The freeze-dried powder exhibited white pie-solid without collapsing, and the particle size of DPT-PM reconstituted with water was about 20-35 nm. The entrapment efficiency of the reconstituted solution was 98%, which shows no differences with the micelles before lyophilization. In-vitro cytotoxicity and cellular uptake studies showed that DPT-PM has a higher degree of cytotoxicity comparing with DPT and mPEG-PLA micelles and uptake of mPEG-PLA was concentration and time-dependent. In vivo characterization of DPT-PM was done for pharmacokinetics behaviors, antitumor activity and safety. The obtained results showed significant improvement in plasma clearance bioavailability (p <0.05) and prolonged blood circulation time comparing with DPT-HP-ß-CD. Moreover, mPEG-PLA micelles had a better degree of anti-tumor efficacy, this was due to better accumulation of mPEG-PLA in tumor cell via enhanced permeability and retention (EPR) effect. Therefore, DPT-PM has great clinical value, and can be expected to be a novel antitumor preparation.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Medicamentos de Ervas Chinesas/administração & dosagem , Nanopartículas , Podofilotoxina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Liofilização , Humanos , Masculino , Camundongos , Camundongos Nus , Micelas , Neoplasias/tratamento farmacológico , Tamanho da Partícula , Podofilotoxina/administração & dosagem , Podofilotoxina/farmacocinética , Podofilotoxina/farmacologia , Poliésteres/química , Polietilenoglicóis/química , Fatores de Tempo , Distribuição Tecidual
17.
Drug Deliv ; 27(1): 128-136, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31894722

RESUMO

Receptor-mediated active targeting and tumor microenvironment responsive systems from polymeric micelles have been studied for rapid cellular internalization and triggered drug release. Previously we have constructed redox-responsive polymeric micelles composed of vitamin E succinate conjugated hyaluronic acid (HA-ss-TOS), which are able to actively target CD44 proteins and quickly release loaded drugs upon exposure to high levels of glutathione (GSH) in tumor cells. In the present study, we found that despite different cellular internalization mechanisms, micelles showed strong antineoplastic effects on 4T1 and B16F10 cells due to redox responsiveness. HA-ss-TOS-PTX micelles exhibited an excellent tumor targeting ability and prolonged retention time compared to Taxol in vivo. In addition, a superior antitumor effect was achieved compared to PTX-loaded insensitive micelles (HA-TOS-PTX) and Taxol. Our results revealed that PTX-loaded HA-ss-TOS micelles could enhance the antineoplastic efficacy of PTX for breast cancer and melanoma treatment and, thus, deserve further attention.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Liberação Controlada de Fármacos , Humanos , Receptores de Hialuronatos/efeitos dos fármacos , Ácido Hialurônico/química , Micelas , Oxirredução , Células Oxífilas/efeitos dos fármacos , Tamanho da Partícula , alfa-Tocoferol/química
18.
Nanomedicine ; 23: 102095, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669856

RESUMO

Recent studies have indicated that multidrug resistance (MDR) can significantly limit the effects of conventional chemotherapy. In this study, PT (Pachymic acid and dehydrotumulosic acid) are the two major triterpenoid components purified and identified in P. cocos. A liposomal co-delivery system encapsulating doxorubicin (DOX) and PT was prepared. Notably, the mechanism of PT reversed P-glycoprotein (P-gp) mediated MDR mainly relied on the inhibition of the P-gp function, which further decreased the levels of P-gp and caveolin-1 proteins. In drug-resistant MCF cells, co-administration with 5 µg/ml PT significantly enhanced sensitivity of DOX. Finally, liposome-mediated co-delivery with PT significantly improved the anti-tumor effect of DOX in tumor-bearing mice when compared to other single therapy groups. In conclusion, this study showed for the first time that DOX and PT act synergistically as an "all-in-one" treatment to reverse MDR during tumor treatment and, thus, should be studied further for a wide range of anti-cancer applications.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Wolfiporia/química , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomaterials ; 228: 119575, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677394

RESUMO

The treatment of pulmonary infections with antibiotics administered via pulmonary delivery provides for higher local therapeutic efficacy rather than through systemic administration. Pneumonia is globally considered a major cause of death due to a lack of proper medication. The treatment of pneumonia with inhalable antibiotics (such as azithromycin (AZM)) can provide a maximum pulmonary therapeutic effect without significant systemic side effects. Compared to non-effervescent microparticles, effervescent microparticles can provide an active driving force to release loaded antibiotics for subsequent distribution deep into the lung by virtue of its smaller size. In this study, N-fumaroylated diketopiperazine (FDKP) was used as a carrier to prepare effervescent inhalable microparticles loaded with AZM (AZM@FDKP-E-MPs). This effervescent dry powder was characterized for both in vitro and in vivo deposition in the lung and the results obtained showed significant improvement in lung deposition and anti-bacterial efficiency, suggesting a strong potential application for pneumonia treatment.


Assuntos
Pulmão , Pneumonia , Administração por Inalação , Dicetopiperazinas , Humanos , Macrófagos , Tamanho da Partícula , Fagocitose , Pneumonia/tratamento farmacológico
20.
Nat Commun ; 10(1): 4871, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653838

RESUMO

One of the main challenges for immune checkpoint blockade antibodies lies in malignancies with limited T-cell responses or immunologically "cold" tumors. Inspired by the capability of fever-like heat in inducing an immune-favorable tumor microenvironment, mild photothermal therapy (PTT) is proposed to sensitize tumors to immune checkpoint inhibition and turn "cold" tumors "hot." Here we present a combined all-in-one and all-in-control strategy to realize a local symbiotic mild photothermal-assisted immunotherapy (SMPAI). We load both a near-infrared (NIR) photothermal agent IR820 and a programmed death-ligand 1 antibody (aPD-L1) into a lipid gel depot with a favorable property of thermally reversible gel-to-sol phase transition. Manually controlled NIR irradiation regulates the release of aPD-L1 and, more importantly, increases the recruitment of tumor-infiltrating lymphocytes and boosts T-cell activity against tumors. In vivo antitumor studies on 4T1 and B16F10 models demonstrate that SMPAI is an effective and promising strategy for treating "cold" tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Hipertermia Induzida/métodos , Melanoma Experimental/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Preparações de Ação Retardada , Géis , Humanos , Imunoterapia , Verde de Indocianina/análogos & derivados , Verde de Indocianina/farmacologia , Lipídeos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Células NIH 3T3 , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA